Siliconix DG129

Dual DPST JFET Analog Switch

Features

- Standby Power: <1 mW
- Bipolar Drivers
- Constant $r_{DS(on)}$ Over Signal Range
- Off Isolation: > 60 dB @ 1 MHz
- Make-Before-Break

Benefits

- Minimizes Standby Power Requirements
- Better Radiation Tolerance
- Less Distortion
- Higher Frequency Switching
- Smooth Closed Loop Response

Applications

- Battery Powered Systems
- Aerospace Control Systems
- Low Distortion Circuits
- High Frequency Switching Circuits

Description

The DG129 is a dual double-pole single-throw analog switch for use in instrumentation, control, and audio communication systems. It is ideally suited for applications requiring a constant on-resistance over the entire analog range.

On-resistance for the DG129 is 20 Ω (typical), and on-leakage is < 2 nA. With all switches off, total power consumption is < 750 μ W. These switches have make-before-break action and due to the processing are

relatively radiation tolerant. An enable pin (V_R) simplifies interfacing with microprocessor, or other logic.

Each device contains four junction field-effect transistors (JFETs) to achieve constant on-resistance. Level-shifting drivers enable low-level inputs (0.8 to 2.5 V) to control the on-off state of each switch. With logic "0" at the driver input the switches will be off. With a logic "1" at the input the switches will be on. In the on-state each switch will conduct current in either direction, and in the off-state each switch will block voltages up to 20 V peak-to-peak.

Functional Block Diagram and Pin Configuration

Two DPST Switches per Package

Truth Table

Logic	Switch		
0	OFF		
1	ON		

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.5 V

Switches Shown for Logic "0" Input

Ordering Information

Temp Range	Package	Part Number
−55 to 125°C	14-Pin Sidebraze	DG129AP/883
	14-1 III SIGCOTAZE	781401CA

DG129 Siliconix

Absolute Maximum Ratings

V+ to V 36 V	Current (any terminal)
V+ to V _D	Storage Temperture65 to 150°C
V_D or V_S to V	Power Dissipationa
V_D to V_S $\pm 22 V$	14-Pin DIP ^b
$V+$ to V_R	
V _R to V	Notes
V_{IN} to $V-\ldots 30 V$	a. All leads welded or soldered to PC Board.
V+ to V _{IN}	b. Derate 11 mW/°C above 75°C
V_{IN} to V_{R} $\pm 6 V$	

$Specifications ^{a} \\$

		Test Conditions Unless Otherwise Specified		A Suffix −55 to 125°C			
Parameter	Symbol	V+ = 12 V, V- = -18 V, $V_R = 0 \text{ V}, V_{IN} = 0.8 \text{ V or } 2.5 \text{ V}^f$	Tempb	Mind	Турс	Max ^d	Unit
Switch							
Analog Signal Range	V _{ANALOG}		Full	-10		10	V
Drain-Source On-Resistance	r _{DS(on)}	$I_S = -10 \text{ mA}, V_D = 10 \text{ V}$	Room Full		20	30 60	Ω
Source-Off Leakage Current	I _S (off)	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$	Room Full	$-1 \\ -100$	0.03	1 100	
Drain-Off Leakage Current	I _D (off)	$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}$	Room Full	$-1 \\ -100$	0.02	1 100	nA
Channel-On Leakage Current	I _{D(on)}	$V_D = V_S = -10 \text{ V}$	Room Full	$-2 \\ -100$	-0.03		
Input							
Input Current with Input Voltage High	I _{INH}	$V_{IN} = 2.5 \text{ V}$	Room Full		15	60 120	
Input Current with Input Voltage Low	I _{INL}	$V_{IN} = 0.8 \text{ V}$	Room Full		0.005		
Dynamic							
Turn-On Time	t _{ON}	Co. Eigen 1	Room		0.5	0.6	
Turn-Off Time	t _{OFF}	See Figure 1	Room		1.1	1.6	μs
Source-Off Capacitance	C _{S(off)}		Room		2.4		
Drain-Off Capacitance	$C_{D(off)}$	f = 1 MHz $V_D, V_S = 0$	Room		2.4		pF
Channel-On Capacitance	C _{D(on)}	, Di, 13	Room		2.8		1
Off-Isolation	OIRR	$R_L = 75 \Omega$, $f = 1 MHz$	Room		> 60		dB
Supply	•			-			-
Positive Supply Current	I+	One Channel On V _{IN} = 2.5 V	Room		2.5	3	
Negative Supply Current	I-		Room	-1.8	-1.6		mA
Reference Supply Current	I_R	· IIV - 2.5 •	Room	-1.4	-1.1		1
Positive Supply Current	I+		Room		0.6	25	
Negative Supply Current	I-	All Channel Off Both $V_{IN} = 0 V$	Room	-25	-0.5		μΑ
Reference Supply Current	I_R	Both VIN = 0 V	Room	-25	-0.5		1

- Refer to PROCESS OPTION FLOWCHART (Section 5 of the 1994 Data Book or FaxBack number 7103). Room = 25°C, Full = -55 to 125°C.

 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guaranteed by design, not subject to production test.
- V_{IN} = input voltage to perform proper function.

Siliconix DG129

Test Circuits

Switch output waveform shown for V_S = constant with logic input waveform as shown. Note that V_S may be + or - as per switching time test circuit. V_O is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Figure 1. Switching Time

Application Hints

V+ Positive Supply Voltage (V)	V- Negative Supply Voltage (V)	V _R Reference Voltage (V)	V _{IN} Logic Input Voltage V _{INH(min)} /V _{INL(max)} (V)	V _S or V _D Analog Voltage Range (V)
12	-18	0	2.5/0.8	-10 to 10
15	-15	0	2.5/0.8	-7 to 13
7	-12	0	2.5/0.8	-5 to 5
5	-15	0	2.5/0.8	-7 to 3
5	-10	0	2.5/0.8	-2 to 3